SEBERAPA EFEKTIFKAH ARTIFICIAL INTELLIGENCE DALAM FRAUD DETECTION PADA MASA COVID-19: SYSTEMATIC LITERATURE REVIEW

Authors

  • Silvia Agustina Universitas Mataram
  • Putu Putri Risma Wandansari Universitas Mataram

DOI:

https://doi.org/10.29303/jaa.v8i1.254

Keywords:

Artificial Intelligence, Audit Fraud, Covid-19, Systematic Literature Review

Abstract

The development of increasingly advanced technology certainly has a positive impact in various fields, especially in auditing, especially during and after Covid 19. A technology that is most highlighted today is the use of Artificial Intelligence in detecting digital fraud risks, which can be interpreted as using the technology-based web to commit fraud and misuse of assets for financial gain. This study aims to review the use of AI in fraud detection to support external audits, especially during the Covid 19 period. The research method used in this study is a Systematic Literature Review (SLR) or systematic literature review. Based on the analysis results, Artificial Intelligence (AI) has begun to be applied to audit procedures to support decision-making through machine learning. The success of Artificial Intelligence in detecting fraud and issuing audit opinions must be seen as two complete sides, namely, opportunities and challenges that must be responded to wisely, especially by auditors. During the covid 19 pandemic, AI helps, especially for auditors challenged in creating new methods developed due to the required COVID-19 strategy. This research implies that auditors and companies can switch to using AI, which can help their work efficiency in disclosing fraud that occurs.

References

Abernathy, A. (2022). A Case for Audit Automation: Evidence from Auditing Literature and an Internship During the Pandemic. Journal of Student Research. https://www.jsr.org/index.php/path/article/view/1583

Allami, F. A. J. (2022). The Use of External Auditor to Data Mining as an Artificial Intelligence Technology to Examine the Internal Control Systems in an Electronic Business Environment. Czech Journal of Multidisciplinary Innovations. https://peerianjournal.com/index.php/czjmi/article/view/310

Chukwudi, O., Echefu, S., Boniface, U., & ... (2018). Effect of artificial intelligence on the performance of accounting operations among accounting firms in South East Nigeria. Asian Journal of …. http://oadigitallib.org/id/eprint/1062/

Dewi dan Apandi. 2011. Gejala Fraud dan Peran Auditor Internal dalam Pendeteksian Fraud di Lingkungan Perguruan Tinggi. UPI

Farahani, M. S., & Esfahani, A. (2022). Opportunities and Challenges of Applying Artificial Intelligence in the Financial Sectors and Startups during the Coronavirus Outbreak. International Journal of Innovation in …. https://ijimes.ir/index.php/ijimes/article/view/68

Febriandani, M. S., & Utomo, D. C. (2022). Systematic Literature Review: Penyebab Kecurangan. Diponegoro Journal of Accounting, 11(September 2019), 1–11.

Gotthardt, M., Koivulaakso, D., Paksoy, O., & ... (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of …. https://helda.helsinki.fi/dhanken/handle/10227/377332

Graetz, G and Michales, G. (2015). Esmating the impact of robots on productivity and employment. center for Economi Performance. http://cep.lse.ac.uk/pubs/download/dpl1335.pdf

Handoko*, B. L., Mulyawan, A. N., Tanuwijaya, J., & Tanciady, F. (2020). Big Data in Auditing for the Future of Data Driven Fraud Detection. International Journal of Innovative Technology and Exploring Engineering, 9(3), 2902–2907. https://doi.org/10.35940/ijitee.b7568.019320

Hewapathirana, I. (2022). Utilizing Prediction Intervals for Unsupervised Detection of Fraudulent Transactions: A Case Study. In Asian Journal of Engineering and Applied …. researchgate.net. https://www.researchgate.net/profile/Isuru-Hewapathirana-2/publication/364825816_Utilizing_Prediction_Intervals_for_Unsupervised_Detection_of_Fraudulent_Transactions_A_Case_Study/links/635f4a1d96e83c26eb6c0d8f/Utilizing-Prediction-Intervals-for-Unsupervis

Huang, F., No, W. G., Vasarhelyi, M. A., & Yan, Z. (2022). Audit data analytics, machine learning, and full population testing. In The Journal of Finance and Data …. Elsevier. https://www.sciencedirect.com/science/article/pii/S240591882200006X

Huang, F. Q., No, W. G., & C, Z. K. Y. (2022). Audit data analytics, machine learning, and full population testing. The Journal of Finance and Data Science, 8(November 2022), 138–144.

Ikhsan, W. M., Ednoer, E. H., Kridantika, W. S., & Firmansyah, A. (2022). Fraud Detection Automation Through Data Analytics and Artificial Intelligence. Riset, 4(2), 103–119. https://doi.org/10.37641/riset.v4i2.166

Kuo, C., & Tsang, S. S. (2022). Detection of price manipulation fraud through rational choice theory: evidence for the retail industry in Taiwan. In Security Journal. Springer. https://doi.org/10.1057/s41284-022-00360-3

Leitner-Hanetseder, S., Lehner, O. M., Eisl, C., & ... (2021). A profession in transition: Actors, tasks and roles in AI-based accounting. In Journal of Applied …. emerald.com. https://doi.org/10.1108/JAAR-10-2020-0201

Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics. https://doi.org/10.1007/s10551-019-04407-1

Nawangsari, A. T., Junjunan, M. I., & Mulyono, R. D. A. P. (2020). Sustainability Reporting: Sebuah Analisis Bibliometrik Pada Database Scopus. Journal of Applied Accounting and Taxation, 5(2), 137–157. https://doi.org/10.30871/jaat.v5i2.2182

Noordin, N. A., Hussainey, K., & Hayek, A. F. (2022). The use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. Journal of Risk and Financial …. https://www.mdpi.com/1911-8074/15/8/339

Prilatama, A., & Sopiah. (2022). Keselamatan Kerja : Systematic Literature Review (Slr) Dan Analisa Bibliometrik. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 3(1), 12–22. https://doi.org/10.55047/transekonomika.v3i1.330

Puthukulam, G., Ravikumar, D. A., & ... (2021). A measure of Internal Auditors’ perception on Accounting Information Systems, Professional Skepticism and Judgment and Audit efficiency. In … Online Journal of …. researchgate.net. https://www.researchgate.net/profile/Anitha-Ravikumar/publication/356171138_a_measure_of_internal_auditors’_perception_on_accounting_information_systems_professional_skepticism_and_judgment_and_audit_efficiency_A_measure_of_Internal_Auditors’_perception_o

Rashwan, A., & Alhelou, E. M. S. (2020). The impact of using artificial intelligence on the accounting and auditing profession in light of the Corona pandemic. In Journal of Advance Research in …. portal.arid.my. https://portal.arid.my/Publications/d50b22b4-cc1e-4a05-aee1-966e2d06dff9.pdf

Roszkowska, P. (2021). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments. Journal of Accounting &Organizational Change. https://doi.org/10.1108/JAOC-09-2019-0098

Siahaan, A. M., Sianipar, V. H., & ... (2022). Auditor Skill In The Big Data Era Review From Literature Study. … Journal. http://journals.kozminski.cem-j.org/index.php/pl_cemj/article/view/148

Ukpong, E. G., Udoh, I. I., & Essien, I. T. (2019). Artificial intelligence: opportunities, issues and applications in banking, accounting, and auditing in Nigeria. Asian Journal of …. http://asian.academicsguard.com/id/eprint/482/

Varrel Brilian Putra Perkasa, Wina Erwina, & Kusnandar. (2022). Studi Bibliometrik dengan VOSviewer terhadap Publikasi Ilmiah mengenai Situs Astana Gede Kawali. Jurnal Ilmiah Multidisiplin, 1(8), 665–673. https://jurnal.arkainstitute.co.id/index.php/nautical/article/view/439

Vlad, M., & Vlad, S. (2021). The use of machine learning techniques in accounting. A short survey. Journal of Social Sciences. https://ibn.idsi.md/vizualizare_articol/138673

Downloads

Published

2023-09-06

How to Cite

Agustina, S., & Wandansari, P. P. R. (2023). SEBERAPA EFEKTIFKAH ARTIFICIAL INTELLIGENCE DALAM FRAUD DETECTION PADA MASA COVID-19: SYSTEMATIC LITERATURE REVIEW. Jurnal Aplikasi Akuntansi, 8(1), 118–130. https://doi.org/10.29303/jaa.v8i1.254